NiAl-Cr microstructure formation

A paper based on my thesis work was recently accepted to the journal Physical Chemistry Chemical Physics. I helped researchers at the IMDEA Materials Institute in Madrid, Spain apply the phase-field model from my thesis to the NiAl-Cr ternary eutectic superalloy. They connected my model to a database of thermodynamic properties and were able to simulate the growth of the complicated microstructure in this system. Superalloys are a special class of metals that are used to make jet turbine blades because they are very strong and resistant to deformation at high temperatures.

Read Formation mechanism of eutectic microstructures in NiAl-Cr composites

Nano Letters paper

This week I had a paper on nucleation phenomena in nanoparticles accepted to the journal Nano Letters. The major conclusions of the work is that nucleation of a second phase is likely to always occur at the surfaces of nanoparticles, and the barrier energy is size dependent as a result of coherency strain, and scales with a particle’s area/volume ratio. The barrier disappears below a critical size. A preprint of the paper is available here. Below is a video of a LiFePO4 nanoparticle being discharged. The lithiated phase forms at the edges of the particle and then moves inward as the particle fills.